Η Ιστορία της Λογικής

"Λογική είναι η τρέλα των πολλών" Ο πρώτος που χρησιμοποίησε τον όρο "λόγος" ήταν ο Ηράκλειτος ο οποίος διευκρίνησε ότι ο λόγος είναι ένας σύνδεσμος ο οποίος συνδέει τον κόσμο (τα φαινόμενα) με την ομιλία...

Η Ιστορία της Λογικής

Η Λογική στην αρχαία Ελληνική Φιλοσοφία

Λογική είναι η νοητική διεργασία κατά την οποία συνδέονται στοιχεία για την παραγωγή αποτελέσματος που σχετίζεται με τα συνδεθέντα πχ αν πούμε ότι 2+2=4 αυτό είναι μια λογική διεργασία ή αν πούμε μιαν οποιαδήποτε λέξη πχ “θάλασσα” αυτό είναι μια λογική διεργασία διότι οι λέξεις είναι σύνδεση αισθητηριακών πληροφοριών (εκ των φαινομένων) με αποτέλεσμα την παραγωγή (υπό μορφή γραμμάτων και φωνημάτων) των λέξεων. Ο όρος “λέξη” εκ του “λέγω” σημαίνει “παράγωγο σύνδεσης”.

Ο πρώτος που χρησιμοποίησε τον όρο “λόγος” ήταν ο Ηράκλειτος ο οποίος διευκρίνησε ότι ο λόγος είναι ένας σύνδεσμος ο οποίος συνδέει τον κόσμο (τα φαινόμενα) με την ομιλία δηλαδή τα φαινόμενα με κάποιο τρόπο μέσον της διάνοιας (γνώσης) μεταποιούνται σε γνώση και σε λέξεις (λόγο). Γι’ αυτό είναι λάθος να ερμηνεύουμε τη λογική αρχόμενοι από τις προτάσεις που είναι παράγωγα των λέξεων. Σωστό είναι να γνωρίζουμε (κατά τον Αριστοτέλη) τις αρχές των όσων ερευνούμε και αρχή του λόγου είναι οι λέξεις οι οποίες ονομάζουν τα φαινόμενα και η έρευνα πρέπει να αρχίζει από την προέλευση των λέξεων και τη σχέση τους με τα φαινόμενα. Αν δεν κατορθώσαμε να βρούμε την σχέση ανάμεσα: στα φαινόμενα, τη γνώση και τον λόγο, σχέση που είναι το υπόβαθρο της Λογικής και που αποδεικνύει πώς νοητικά διενεργείται η Λογική, δηλαδή η σύνδεση των όσων φέρνουμε στο μυαλό για να τα κάνουμε γνώση και γλώσσα.

Πριν τον Πλάτωνα

Αν και οι αρχαίοι Αιγύπτιοι ανακάλυψαν εμπειρικά μερικές αλήθειες της γεωμετρίας, το μεγάλο επίτευγμα των αρχαίων Ελλήνων ήταν να αντικαταστήσουν τις εμπειρικές μεθόδους με επιστημονικές. Η συστηματική μελέτη αυτή φαίνεται να ξεκίνησε με τη σχολή του Πυθαγόρα στα τέλη του έκτου αιώνα π.κ.ε. Οι τρεις βασικές αρχές της γεωμετρίας είναι ότι ορισμένες προτάσεις πρέπει να γίνονται δεκτές ως αληθινές χωρίς απόδειξη, ότι όλες οι υπόλοιπες προτάσεις του συστήματος να προκύπτουν από τις προηγούμενες και ότι η εξαγωγή πρέπει να είναι τυπική (φόρμαλ) δηλαδή, ανεξάρτητη από το συγκεκριμένο υπό εξέταση θέμα. Τα σπέρματα των πρώιμων αποδείξεων φυλάσσονται στα έργα του Πλάτωνα και του Αριστοτέλη και η ιδέα ενός παραγωγικού τέτοιου συστήματος ήταν πιθανώς γνωστό στη Πυθαγόρεια σχολή και στην Πλατωνική Ακαδημία.

Ξεχωριστά από τη γεωμετρία, η ιδέα για ένα πρότυπο μοτίβο επιχειρήματος βρίσκεται στην reductio ad absurdum (εις άτοπον απαγωγή) χρησιμοποιήθηκε από τον Ζήνωνα της Ελέας, ένα προσωκρατικό φιλόσοφο του 5ου αιώνα π.κ.ε. Αυτή είναι η τεχνική της κατάρτισης ενός προφανώς ψευδούς, παράλογου ή αδύνατου συμπεράσματος από την υπόθεση, αποδεικνύοντας έτσι ότι η υπόθεση είναι ψευδής. Ο Παρμενίδης παρουσιάζει το Ζήνωνα να ισχυρίζεται ότι έχει γράψει ένα βιβλίο όπου υπερασπίζεται το μονισμό του Παρμενίδη καταδεικνύοντας το παράλογο συμπέρασμα να υποτεθεί ότι είναι δυϊσμός. Άλλοι φιλόσοφοι που άσκησαν τέτοια διαλεκτική αιτιολογία ήταν οι λεγόμενοι μικροί σωκρατικοί, συμπεριλαμβανομένων ο Ευκλείδης ο Μεγαρεύς, που ήταν πιθανότατα οπαδός του Παρμενίδη και του Ζήνωνα. Τα μέλη αυτής της σχολής ονομάστηκαν Διαλεκτικοί. Περαιτέρω στοιχεία ότι προαριστοτελικοί διανοητές ασχολήθηκαν με τις αρχές του συλλογισμού βρέθηκαν σε ένα θραύσμα που ονομάζεται Δίσσοι Λόγοι, το οποίο πιθανώς γράφτηκε στις αρχές του 4ου αιώνα π.κ.ε. Αυτό είναι μέρος μιας παρατεταμένης συζήτησης για την αλήθεια και την αναλήθεια.

Η Λογική του Πλάτωνα

Κανένα από τα σωζόμενα έργα του φιλόσοφου Πλάτωνα (428-347 π.κ.ε.) του 4ου αιώνα δεν περιλαμβάνει οποιαδήποτε Τυπική Λογική, αλλά περιλαμβάνουν σημαντικές συνεισφορές στον τομέα της φιλοσοφικής Λογικής. Ο Πλάτωνας θέτει τρία ερωτήματα:

Τι είναι αυτό που μπορεί ορθά να καλείται αληθές ή ψευδές;
Ποια είναι η φύση της σύνδεσης μεταξύ των παραδοχών ενός έγκυρου επιχειρήματος και της σύναψής του;
Ποια είναι η φύση του ορισμού;

Το πρώτο ερώτημα τίθεται στο διάλογο Θεαίτητος ο Πλάτωνας προσδιορίζει τη σκέψη ή την άποψη με τη συζήτηση ή το διάλογο (λόγος). Το δεύτερο ερώτημα είναι αποτέλεσμα της θεωρίας των ιδεών (ή μορφών). Οι “Ιδέες” (μορφές) δεν είναι πράγματα με τη συνήθη έννοια, ούτε αυστηρές έννοιες στο μυαλό, αλλά αντιστοιχούν σε αυτό που οι φιλόσοφοι αργότερα ονόμασαν universals (καθολικά), δηλαδή μια αφηρημένη οντότητα κοινή με το ίδιο όνομα σε κάθε σύνολο πραγμάτων. Και στους δύο πλατωνικούς διαλόγους Πολιτεία και Σοφιστής, ο Πλάτωνας υποστηρίζει ότι η αναγκαία σχέση μεταξύ των προκείμενων και του συμπεράσματος ενός επιχειρήματος αντιστοιχεί σε μια αναγκαία σύνδεση μεταξύ των “Ιδεών” (φορμών).

Το τρίτο ερώτημα είναι σχετικό με τον ορισμό. Πολλοί από τους διαλόγους του Πλάτωνα αφορούν την αναζήτηση για τον ορισμό κάποιας σημαντικής έννοιας (δικαιοσύνη, αλήθεια, το καλό), και ενδέχεται ο Πλάτωνας να εντυπωσιάστηκε από την σημαντικότητα του ορισμού στα μαθηματικά. Οτιδήποτε κρύβεται πίσω από έναν ορισμό είναι μια Πλατωνική “Ιδέα” (φόρμα), ο κοινός χαρακτήρας παρουσιάζεται σε διάφορα συγκεκριμένα πράγματα. Έτσι, ο ορισμός αντικατοπτρίζει το απόλυτο αντικείμενο της κατανόησής μας και είναι θεμέλιο κάθε έγκυρου συμπερασμού. Αυτό είχε μεγάλη επιρροή στον Αριστοτέλη, και ιδίως στην αντίληψη του Αριστοτέλη για την ουσία ενός πράγματος.

Η Λογική του Αριστοτέλη
Κύριο λήμμα: Όργανον

Η Λογική του Αριστοτέλη και ιδιαίτερα η θεωρία του για το συλλογισμό, είχε τεράστια επιρροή στη δυτική σκέψη. Τα έργα λογικής, που ονομάζονται ως σύνολο Το Όργανον, είναι η πρώτη τυπική μελέτη της Λογικής που έχει βρεθεί. Αν και είναι δύσκολο να προσδιορίσουμε τις ημερομηνίες, η πιθανή σειρά της γραφής των λογικών έργων του Αριστοτέλη είναι:

Κατηγορίες, μια μελέτη για τις δέκα κατηγορίες που χαρακτηρίζουν τα όντα του αισθητού κόσμου
Τοπικά (με ένα παράρτημα του που ονομάζεται Περί των Σοφιστικών ελέγχων), μια συζήτηση της διαλεκτικής
Περί ερμηνείας, μια ανάλυση απλών κατηγορηματικών προτάσεων, σε απλούς όρους, άρνηση, και ενδείξεις ποσότητας, καθώς και μια ολοκληρωμένη αντιμετώπιση των εννοιών της αντίθεσης και μετατροπής. Το 7ο κεφάλαιο είναι η προέλευση του “τετραγώνου αντίθεσης” (ή λογικού τετραγώνου). Το 9ο κεφάλαιο περιέχει τις απαρχές της τροπικής λογικής.
Αναλυτικά Πρότερα, μια τυπική ανάλυση του έγκυρου επιχειρήματος ή “συλλογισμού”
Αναλυτικά Ύστερα, μια μελέτη της επιστημονικής απόδειξης, που περιέχει τις ώριμες απόψεις του Αριστοτέλη στη λογική.

Τα έργα αυτά είναι εξαιρετικής σημασίας για την ιστορία της λογικής. Ο Αριστοτέλης ήταν ο πρώτος επιστήμονας της λογικής που επιχείρησε μια συστηματική ανάλυση της λογικής σύνταξης, σε ουσιαστικό και ρήμα. Στις Κατηγορίες αποπειράθηκε σε όλα τα πράγματα που ένα ουσιαστικό μπορεί να αναφέρεται. Αυτή η ιδέα αποτελεί τη βάση του φιλοσοφικού του έργου, τα Μεταφυσικά, τα οποία είχαν επίσης βαθιά επίδραση στη Δυτική σκέψη. Ήταν ο πρώτος που ασχολήθηκε με τις αρχές της αντίφασης και αποκλεισμένης μέσης με συστηματικό τρόπο. Υπήρξε ο πρώτος επιστήμονας της τυπικής λογικής (δηλαδή έδωσε τις αρχές της συλλογιστικής που χρησιμοποιεί μεταβλητές για να δείξει την υποκείμενη λογική μορφή των επιχειρημάτων).

Ερευνούσε για τις σχέσεις εξάρτησης που χαρακτηρίζουν αναγκαστικά το συμπέρασμα, και διέκρινε την εγκυρότητα αυτών των σχέσεων, από την αλήθεια των προκείμενων (η αξιοπιστία του επιχειρήματος). Τα Αναλυτικά Πρότερα αποτελούν το εγχειρίδιο της συλλογιστικής, όπου τρεις σημαντικές αρχές εφαρμόστηκαν για πρώτη φορά στην ιστορία: η χρήση των μεταβλητών, μια καθαρά τυπική αντιμετώπιση και τη χρήση ενός αξιωματικού συστήματος. Στα Τοπικά και Περί των Σοφιστικών ελέγχων ανέπτυξε επίσης μια θεωρία μη-τυπικής λογικής (π.χ. θεωρία των πλανών).

Στωική Λογική

Το άλλο μεγάλο σχολείο της ελληνικής λογικής είναι αυτό των Στωικών. Η Στωική λογική έχει τις ρίζες της πίσω στα τέλη του 5ου αιώνα π.κ.ε. στον φιλόσοφο Ευκλείδη από τα Μέγαρα, μαθητή του Σωκράτη και λίγο μεγαλύτερη ηλικίας σύγχρονος του Πλάτωνα. Οι μαθητές και οι διάδοχοί του ονομάστηκαν “Μεγαρείς”, ή “Εριστικοί”, ενώ αργότερα “οι Διαλεκτικοί”. Οι δύο πιο σημαντικοί διαλεκτικοί της σχολής των Μεγάρων ήταν ο Διόδωρος Κρόνος και ο Φίλων που έδρασαν στα τέλη του 4ου αιώνα π.κ.ε. Οι Στωικοί υιοθέτησαν την Μεγαρική λογική και τη συστηματοποίησαν.

Το πιο σημαντικό μέλος της σχολής ήταν ο Χρύσιππος, ο οποίος ήταν ο τρίτος κατά σειρά επικεφαλής της σχολής, και ο οποίος τυποποίησε μεγάλο μέρος της στωικής θεωρίας. Υπάρχει η υπόθεση ότι έχει γράψει πάνω από 700 έργα, συμπεριλαμβανομένων τουλάχιστον 300 στη Λογική, ενώ σχεδόν κανένα δε σώζεται. Σε αντίθεση με τον Αριστοτέλη, δεν έχουμε ολοκληρωμένα έργα από του Μεγαρείς ή τους πρώιμους Στωικούς και πρέπει να βασιζόμαστε σε αναφορές (μερικές φορές εχθρικές) από μεταγενέστερες πηγές, όπως είναι εμφανώς ο Διογένης ο Λαέρτιος, ο Σέξτος ο Εμπειρικός, ο Γαληνός, ο Αύλος Γέλλιος, ο Αλέξανδρος ο Αφροδισιεύς και ο Κικέρων.

Τρεις σημαντικές συνεισφορές της στωικής σχολής ήταν (1) η αναφορά στην τροπικότητα, (2) η θεωρία της συνεπαγωγής, και (3) η αναφορά στο νόημα και την αλήθεια.

Τροπικότητα. Σύμφωνα με τον Αριστοτέλη, οι Μεγαρείς της εποχής του ισχυρίστηκαν ότι δεν υπήρχε διάκριση μεταξύ δυνατότητας και πραγματικότητας. Ο Διόδωρος Κρόνος ορίζει το δυνατόν ως αυτό που είτε είναι είτε θα είναι, το αδύνατο ως αυτό που δεν είναι αλήθεια και το απρόοπτο ως αυτό που είτε είναι ήδη, είτε θα είναι ψευδές. Ο Διόδωρος είναι επίσης γνωστός για το λεγόμενο master argument, όπου οι τρεις προτάσεις “ότι είναι παρελθόν, είναι αλήθεια και αναγκαίο”, “το αδύνατο δεν απορρέει από το δυνατό” και “Ότι ούτε είναι, ούτε θα γίνει, είναι πιθανό” είναι ασυνεπείς. Ο Διόδωρος χρησιμοποίησε την αληθοφάνεια των πρώτων δύο προτάσεων για να αποδείξει ότι τίποτα δεν είναι δυνατό αν δεν είναι ή δεν θα γίνει αληθινό. Ο Χρύσιππος, αντιθέτως, αρνήθηκε την δεύτερη υπόθεση και είπε ότι το αδύνατο μπορεί να προκύψει από το δυνατό.

Συνεπαγωγή. Οι πρώτοι επιστήμονες της λογικής που ασχολήθηκαν την συνεπαγωγή ήταν ο Διόδωρος ο Μεγαρεύς και ο μαθητής του, Φίλωνας των Μεγάρων. Ο Φίλωνας υποστήριξε ότι μια πραγματική υπόθεση (conditional) είναι αυτή που δεν ξεκινά με την αλήθεια και τελειώνει με ένα ψέμα, όπως “αν αυτή είναι μέρα, τότε μιλάω”. Αλλά ο Διόδωρος υποστήριξε ότι μια πραγματική υπόθεση είναι αυτό που δεν θα μπορούσε ενδεχομένως να ξεκινήσει με μια αλήθεια και να τελειώσει με ένα ψέμα – έτσι η υπόθεση που αναφέρεται παραπάνω θα μπορούσε να είναι ψευδή αν ήταν μέρα και γινόμουν σιωπηλός. Το κριτήριο του Φίλωνα για την αλήθεια είναι αυτό που αποκαλείται truth-functional (αληθο-συνάρτηση, ορίζεται σε αληθινές προτάσεις) ορισμός του “αν … τότε” (if…then). Σε μια δεύτερη αναφορά, ο Σέξτος λέει “Σύμφωνα με τον ίδιο, υπάρχουν τρεις τρόποι με τους οποίους μια υπόθεση μπορεί να είναι αλήθεια, και ένας με τον οποίο μια υπόθεση μπορεί να είναι ψευδής”.

Νόημα και αλήθεια. Η πιο σημαντική και χαρακτηριστική διαφορά της Μεγαρικής-Στωικής λογικής με την αριστοτελική λογική είναι ότι αφορά προτάσεις, όχι ουσιαστικά, και είναι πιο κοντά στην σύγχρονη προτασιακή λογική. Οι Στωικοί διέκριναν την φωνή, τη λέξη (το οποίο είναι ευκρινές αλλά μπορεί να υπάρχει χωρίς νόημα) και τον διάλογο (η μεστή νοήματος εκστόμιση). Το πιο πρωτότυπο μέρος της θεωρίας τους είναι η ιδέα ότι κάθε τι που εκφράζεται από μια φράση, το λεκτόν, είναι κάτι πραγματικό. Αυτό αντιστοιχεί σε αυτό που καλείται τώρα πρόταση. Ο Σέξτος λέει ότι σύμφωνα με τους Στωικούς, τρία πράγματα συνδέονται μεταξύ τους, αυτό που σημαίνεται (signified), αυτό που σημαίνει (signifies) και το αντικείμενο. Για παράδειγμα, αυτό που σημαίνει είναι η λέξη Δίον, αυτό που σημαίνεται (αυτό που υποδηλώνει) είναι αυτό που κατανοούν οι Έλληνες αλλά όχι οι βάρβαροι, και το αντικείμενο είναι το Δίον το ίδιο.

Μεσαιωνική λογική

Η λογική στη Μέση Ανατολή
Κύριο λήμμα: Αβικεννισμός

Τα έργα των Αλ-Κίντι, Αλ-Φαράμπι, Αλ-Γκαζαλί, Αβερρόη και άλλων μουσουλμάνων επιστημόνων της λογικής βασίστηκαν στην αριστοτελική λογική και ήταν σημαντικά για τη διάδοση των ιδεών του αρχαίου κόσμου στη μεσαιωνική Δύση. Ο Αλ-Φαράμπι (873-950) ήταν ένας επιστήμονας της αριστοτελικής λογικής ο οποίος συζήτησε τα θέματα των μελλοντικών ενδεχόμενων (future contingents), τον αριθμό και τη σχέση των κατηγοριών, τη σχέση μεταξύ λογικής και γραμματικής και μη αριστοτελικές τύποι (forms) συμπερασμού. Ο Αλ-Φαραμπί ακομα θεώρησε επίσης τις θεωρίες των υποθετικών συλλογισμών και του αναλογικού συμπερασμού, το οποίο ήταν μέρος της στωικής παράδοσης της λογικής και όχι της αριστοτελικής.

Ο Ιμπν Σίνα (Αβικέννας) (980-1037) ήταν ιδρυτής της αβικεννικής λογικής, η οποία αντικατέστησε την αριστοτελική λογική ως το κυρίαρχο σύστημα λογικής στον ισλαμικό κόσμο, και είχε επίσης μια σημαντική επιρροή στην δυτικούς μεσαιωνικούς συγγραφείς, όπως ο Αλμπέρτους Μάγκνους. Ο Αβικέννας έγραψε στον υποθετικό συλλογισμό και στο προτασιακό λογισμό, που ήταν και οι δύο τμήματα της στωικής παράδοσης στη λογική. Ανέπτυξε μια πρωτότυπη θεωρία, της “χρονικώς τροπικής” συλλογιστικής και έκανε χρήση της επαγωγικής λογικής, όπως οι μέθοδοι του Μιλλ οι οποίοι ήταν καίριας σημασίας για την επιστημονική μέθοδο.

Μια από τις ιδέες του Αβικέννα είχε ιδιαίτερα σημαντική επίδραση στους δυτικούς επιστήμονες της λογικής όπως είναι ο Ουίλιαμ του Όκαμ. Η λέξη του Αβικέννα για την σημασία ή έννοια (ma’na), μεταφράστηκε από τους σχολαστικούς λογικιστές στα λατινικά ως intentio. Στην μεσαιωνική λογική και επιστημολογία, αυτό είναι ένα σημάδι στο μυαλό που αποτελεί με φυσικό τρόπο ένα πράγμα. Ήταν ζωτικής σημασίας για την ανάπτυξη του κονσεπτουαλισμού του Όκαμ. Ένας καθολικός όρος (π.χ. “άνθρωπος”) δεν σημαίνει ένα πράγμα που υπάρχει στην πραγματικότητα, αλλά μάλλον ένα σημάδι στο μυαλό (intentio in intellectu) που αντιπροσωπεύει πολλά πράγματα στην πραγματικότητα. Ο Όκαμ επικαλείται τον σχολιασμό του Αβικέννα στο έργο του Metaphysics V υπέρ της δικής του άποψης.

Ο Φαχρουντίν Ραζί επέκρινε την “πρώτη εικόνα” του Αριστοτέλη και διατύπωσε ένα από τα πρώτα συστήματα επαγωγικής λογικής, προαναγγέλλοντας το σύστημα που αναπτύχθηκε από τον Τζον Στιούαρτ Μιλλ (1806-1873). Το έργο του Αλ-Ράζι θεωρήθηκε από τους μεταγενέστερους μελετητές του Ισλάμ ως μια νέα κατεύθυνση για την ισλαμική λογική, προς μια μετα-αβικεννική λογική. Αυτό το σύστημα αναπτύχθηκε περαιτέρω από τον μαθητή του Afdaladdîn al-Khûnajî (πέθ. 1249), ο οποίος ανέπτυξε μια μορφή της λογικής που περιτρέφεται γύρω από το αντικείμενο της αιτίας των conceptions (στη μεταφυσική φιλοσοφία) και assents. Σε απάντηση σε αυτή την παράδοση, ο Αλ-Τούσι (1201-1274) ξεκίνησε μια παράδοση της νεο-αβικεννικής λογικής που παρέμεινε πιστή στο έργο του Αβικέννα και υπήρξε ως εναλλακτική λύση για την πιο κυρίαρχη μετα-αβικεννική σχολή κατά τη διάρκεια των επόμενων αιώνων.

Η πεφωτισμένη σχολή (illuminationist), που ιδρύθηκε από τον Shahab al-Din Suhrawardi (1151-1191), ο οποίος ανέπτυξε την ιδέα της “καθοριστικής αναγκαιότητας”, η οποία αναφαίρεται στην μείωση των λειτουργιών (αναγκαιότητα, δυνατότητα, συγκυρία και ανέφικτο) σε μία ενιαία λειτουργία της αναγκαιότητας. Ο Αλ-Ναφίς έγραψε ένα βιβλίο στη αβικεννική λογική, το οποίο ήταν σχολιασμός του έργου Al-Isharat (Τα σημάδια) και έργου Al-Hidayah (Η καθοδήγηση) του Αβικέννα. Ο Ibn Taymiyyah (1263-1328) έγραψε το Ar-Radd ‘ala al-Mantiqiyyin, όπου αντιτάχθηκε της χρησιμότητας, αλλά όχι του κύρους, του συλλογισμού και τάχθηκε υπέρ του επαγωγικού συλλογισμού.

Ο Ibn Taymiyyah επίσης αντιτάχθηκε της βεβαιότητας των συλλογιστικών επιχειρημάτων και τάχθηκε υπέρ της αναλογίας. Το επιχείρημα του είναι ότι οι έννοιες που στηρίχθηκαν στην επαγωγή είναι οι ίδιες όχι βέβαιες αλλά μόνο πιθανές, και, συνεπώς, ένας συλλογισμός που βασίζεται σε τέτοιες έννοιες δεν είναι πιο βέβαιος από ένα επιχείρημα που βασίζεται στην αναλογία. Ισχυρίστηκε επίσης ότι η επαγωγή εδράζεται η ίδια στη διαδικασία της αναλογίας. Το πρότυπο του αναλογικού συλλογισμού βασίστηκε σε αυτό των νομικών επιχειρημάτων. Αυτό το μοντέλο έχει χρησιμοποιηθεί στο πρόσφατο έργο του Τζον Σόβα.

Το Sharh al-takmil fi’l-mantiq, που γράφτηκε από τον Muhammad ibn Fayd Allah ibn Muhammad Amin al-Sharwani τον 15ο αιώνα, είναι το τελευταίο μεγάλο Αραβικό έργο στη λογική που μελετήθηκε. Ωστόσο, “χιλιάδες πάνω σε χιλιάδες σελίδες” στη λογική γράφτηκαν μεταξύ του 14ου και 19ου αιώνα, αν και μόνο ένα μικρό ποσοστό των κειμένων που γράφτηκαν κατά τη διάρκεια αυτής της περιόδου έχουν μελετηθεί από τους ιστορικούς και, ως εκ τούτου, πολύ λίγα είναι γνωστά σχετικά με το πρωτότυπο έργο για την ισλαμική λογική που παράχθηκε αυτή την ύστερη περίοδο.

terrapapers.com- logiki 2
Η Λογική στην Μεσαιωνική Ευρώπη
Κύριο λήμμα: Αριστοτελική λογική

Η “μεσαιωνική λογική” (επίσης γνωστή ως “σχολαστική λογική”) σημαίνει γενικά τη μορφή της αριστοτελικής λογικής που αναπτύχθηκε στη μεσαιωνική Ευρώπη καθ’ όλη τη διάρκεια της περιόδου 1200-1600. Για αιώνες μετά την διατύπωση της στωικής λογικής, αυτό ήταν το κυρίαρχο σύστημα λογικής στον κλασσικό κόσμο. Όταν η μελέτη της λογικής συνεχίστηκε μετά το Μεσαίωνα, η κύρια πηγή ήταν το έργο του χριστιανικού φιλόσοφου Βοήθιος, ο οποίος ήταν εξοικειωμένος με μερικά στοιχεία της αριστοτελικής λογικής, αλλά με κανένα έργο των Στωικών.

Μέχρι το δωδέκατο αιώνα, τα μόνα έργα του Αριστοτέλη που ήταν διαθέσιμα στη Δύση ήταν τα Κατηγορίαι, Περί ερμηνείας και η μετάφραση του Βοήθιου της Εισαγωγή του Πορφυρίου (ένα σχολιασμός στο έργο Κατηγορίαι). Τα έργα αυτά ήταν γνωστά ως η “Παλαιά Λογική” (Logica Vetus ή Ars Vetus). Ένα σημαντικό έργο σε αυτήν την παράδοση ήταν το Logica Ingredientibus του Πέτρου Αβελάρδου (1079-1142). Η άμεση επιρροή που άσκησε ήταν μικρή, αλλά η επιρροή μέσα από τους μαθητές όπως ήταν ο Τζον του Σαλίσμπουρι (John of Salusbury) ήταν μεγάλη, και η μέθοδος εφαρμογής αυστηρής λογικής ανάλυσης στη θεολογία άνοιξε τον δρόμο να αναπτυχθεί η θεολογική κριτική κατά την περίοδο που ακολούθησε.

Μέχρι τις αρχές του 13ου αιώνα τα υπόλοιπα έργα του Όργανον του Αριστοτέλη (συμπεριλαμβανομένων των Αναλυτικά Πρότερα, Αναλυτικά Ύστερα και Περί των Σοφιστικών ελέγχων) είχαν ανακτηθεί στη Δύση και αναβιώσει από τον Θωμά Ακινάτη. Η εργασία στη Λογική μέχρι τότε ήταν ως επί το πλείστον παράφραση ή σχολιασμός σχετικά με το έργο του Αριστοτέλη. Τη περίοδο από τα μέσα του 13ου αιώνα έως τα μέσα του 14ου αιώνα υπήρξε σημαντική ανάπτυξη της λογικής, ιδίως σε τρεις τομείς που ήταν πρωτότυποι, με μικρή περαιτέρω ανάπτυξη της αριστοτελικής παράδοσης που ήρθε πριν. Αυτοί οι τομείς ήταν:

Η θεωρία της υπόθεσης. Η θεωρία της υπόθεσης ασχολείται με τον τρόπο που τα κατηγορήματα (π.χ. “άνθρωπος”) εκτείνονται σε ένα πεδίο από μεμονωμένα άτομα (individuals) (π.χ. όλοι οι άνθρωποι). Στη πρόταση «κάθε άνθρωπος είναι ένα ζώο», ο όρος “άνθρωπος” εκτείνεται ή τα άτομα – φιλοσοφικά ως ουσία ή αντικείμενα (supposit) – άνθρωποι υφίστανται στο παρόν; Ή μήπως το φάσμα περιλαμβάνει τους ανθρώπους του παρελθόντος και του μέλλοντος; Μπορεί ένας όρος να είναι supposit για μη υπαρκτά άτομα (individuals); Μερικοί μεσαιωνιστές έχουν υποστηρίξει ότι η ιδέα αυτή ήταν ο πρόδρομος της λογικής πρώτης τάξης. “Η θεωρία της υπόθεσης με τις σχετικές θεωρίες του copulatio ( συμβολισμός-χωρητικότητα των επιθετικών προσδιορισμών), του ampliation (διεύρυνση του αναφορικού τομέα), και distributio constitute ένα από τα πιο πρωτότυπα επιτεύγματα της Δυτικής μεσαιωνικής λογικής”.

Η θεωρία των συγκατηγορημάτων. Τα συγκατηγορήματα είναι όροι απαραίτητοι για τη λογική, τα οποία όμως, σε αντίθεση με του κατηγορηματικούς όρους, δεν σημαίνουν ονόματί τους, αλλά “συν-σημαίνουν” με άλλες λέξεις. Παραδείγματα συγκατηγορημάτων είναι τα “και”, “δεν”, “κάθε”, “εάν” και ούτω καθεξής.

Η θεωρία των λογικών συνεπειών ή των συνεπαγωγών. Μια συνεπαγωγή είναι μια υποθετική, δυνητική πρόταση: δύο προτάσεις συνδέονται από τη διάταξη “αν…τότε”. Για παράδειγμα, «αν ένας άνθρωπος τρέχει, τότε ο θεός υπάρχει» (Si homo currit, Deus est). Μια πλήρως ανεπτυγμένη θεωρία των λογικών συνεπειών δίνεται στο τρίτο βιβλίο του έργου Summa Logicae του Ουίλιαμ του Όκαμ. Εκεί ο Όκαμ διακρίνει μεταξύ των “αιτιατών” και “τυπικών” λογικών συνεπειών, που είναι περίπου ισοδύναμες με την αιτιατή συνεπαγωγή και τη λογική συνεπαγωγή αντίστοιχα. Παρόμοιες αναφορές δίνονται από τους Ζαν Μπουριντάν και Αλβέρτο της Σαξωνίας.

Τα τελευταία μεγάλα έργα αυτής της παράδοσης είναι τα Logic του Τζον Πόινσοτ (1589-1644, γνωστός ως Τζον του Αγίου Θωμά), Metaphysical Disputations του Φρανσίσκο Σουάρες (1548-1617), και Logica Demonstrativa του Τζοβάνι Τζιρόλαμο Σακέρι (1667-1733).

Η άνοδος της σύγχρονης λογικής

Το χρονικό διάστημα μεταξύ 14ου αιώνα μ.κ.ε. – αρχές 19ου αιώνα μ.κ.ε. ήταν σε μεγάλο βαθμό παρακμής και παραμέλησης της λογικής, και θεωρείται γενικά ως άγονο από τους ιστορικούς της λογικής. Η αναβίωση της λογικής συνέβη στα μέσα του 19ου αιώνα, κατά την αρχή μιας επαναστατικής περιόδου όπου το θέμα εξελίχθηκε σε έναν αυστηρό και τυπολατρικό επιστημονικό τομέα του οποίου υπόδειγμα ήταν η ακριβής μέθοδος που χρησιμοποιείται στα μαθηματικά. Η ανάπτυξη της σύγχρονης “συμβολικής” ή “μαθηματικής” λογικής κατά τη διάρκεια αυτής της περιόδου είναι η πιο σημαντική στα 2000 έτη της λογικής, και είναι αναμφισβήτητα ένα από τα πιο σημαντικά και αξιοσημείωτα γεγονότα στην ανθρώπινη ιστορία της διανόησης.

Περίοδοι της Σύγχρονης Λογικής

Η ανάπτυξη της Σύγχρονης Λογικής εμπίπτει σε (περίπου) πέντε περιόδους:

Η εμβρυϊκή περίοδος από τον Λάιμπνιτς το 1847, όταν η έννοια του λογικού λογισμού συζητήθηκε και αναπτύχθηκε, κυρίως από τον ίδιο, χωρίς να σχηματίσει σχολές, και περιοδικά μεμονομένες προσπάθειες εγκαταλείφθηκαν ή πέρασαν απαρατήρητες.

Η αλγεβρική περίοδος από την ανάλυση του Μπουλ στις διαλέξεις (Vorlesungen) του Ερνστ Σρέντερ. Αυτή την περίοδο υπήρχαν περισσότεροι ασκούμενοι, καθώ και μια μεγαλύτερη συνέχεια της ανάπτυξης της λογικής.

Η λογικιστική περίοδος από το έργο Begriffsschrift του Φρέγκε στο Principia Mathematica των Ράσελ και Άλφρεντ Νορθ Ουάιτχεντ. Αυτή τη περίοδο κυριαρχούσε η “λογικιστική σχολή”, στόχος της οποίας ήταν να ενσωματώσει τη λογική όλου του μαθηματικού και επιστημονικού λόγου σε ένα ενιαίο σύστημα, και το οποίο, έχοντας ως βασική αρχή ότι όλες οι μαθηματικές αλήθειες είναι λογικές, δεν θα δεχόταν οποιαδήποτε μη-λογική ορολογία. Οι μεγάλοι λογικιστικοί ήταν ο Φρέγκε, ο Ράσελ και, στις αρχές του, ο Βίτγκενσταϊν. Το αποκορύφωμα αυτής της εποχής ήταν το Principia, ένα σημαντικό έργο που περιλαμβάνει μια διεξοδική εξέταση και λύση των αντινομιών που είχαν αποτελέσει εμπόδιο στην προηγούμενη περίοδο.

Η μεταμαθηματική περίοδος (ή αλλιώς φορμαλιστική περίοδος) από το 1910 έως τη δεκαετία του 1930, η οποία είδε την ανάπτυξη της μεταλογική, στο πεπερασμένο σύστημα του Χίλμπερτ, και του μη-πεπερασμένου συστήματος του Löwenheim και Skolem, και το συνδυασμό της λογικής με την μεταλογική στο έργο του Γκέντελ και του Τάρσκι. Το θεώρημα μη πληρότητας του Γκέντελ του 1931 ήταν ένα από τα μεγαλύτερα επιτεύγματα στην ιστορία της λογική. Αργότερα, στη δεκαετία του 1930, ο Γκέντελ ανέπτυξε την έννοια της συνολο-θεωρητικής κατασκευασιμότητας.

Η περίοδος μετά τον Δεύτερο Παγκόσμιο Πόλεμο, όταν η μαθηματική λογική χωρίστηκε σε τέσσερις αλληλένδετες αλλά ξεχωριστές περιοχές της έρευνας: θεωρία μοντέλων, θεωρία αποδείξεων, θεωρία υπολογισμού και θεωρία συνόλων, και οι ιδέες και μέθοδοι της άρχισαν να επηρεάζουν τη φιλοσοφία.

Θέματα στη λογική

Συλλογιστική λογική
Κύριο λήμμα: Αριστοτελική λογική

Το Όργανον ήταν ο κορμός του έργου του Αριστοτέλη σχετικά με τη λογική, μαζί με τα Αναλυτικά πρότερα που αποτελεί το πρώτη εργασία στην τυπική λογική, εισάγοντας τη συλλογιστική λογική. Τα μέρη της συλλογιστικής λογικής, γνωστή και από το όνομα όρος λογική, είναι η ανάλυση των κρίσεων σε προτάσεις που αποτελούνται από δύο όρους που συνδέονται με μία από έναν σταθερό αριθμό σχέσεων, καθώς και την έκφραση των συμπερασμάτων μέσω των συλλογισμών που αποτελούνται από δύο προτάσεις που μοιράζονται έναν κοινό όρο ως αρχή, και ένα συμπέρασμα το οποίο είναι μια πρόταση με τη συμμετοχή των δύο μη συνδεδεμένων όρων από τις προκείμενες.

Το έργο του Αριστοτέλη θεωρήθηκε κατά την κλασσική αρχαιότητα και από τον μεσαίωνα στην Ευρώπη και τη Μέση Ανατολή ως την ίδια την εικόνα ενός πλήρως εκπονημένου συστήματος. Ωστόσο, δεν ήταν μόνο του: οι Στωικοί πρότειναν ένα σύστημα προτασιακής λογικής το οποίο μελετήθηκε από μεσαιωνικούς επιστήμονες της λογικής. Επίσης, το πρόβλημα των πολλαπλών μεταβλητών αναγνωρίστηκε στη μεσαιωνική εποχή. Παρ’ όλα αυτά, τα προβλήματα της συλλογιστικής λογικής δεν θεωρείται ότι χρήζουν επαναστατικών λύσεων.

Σήμερα, ορισμένοι ακαδημαϊκοί υποστηρίζουν ότι το σύστημα του Αριστοτέλη γενικά θεωρείται ότι έχει λίγο περισσότερο από ιστορική αξία (αν υπάρχει κάποιο σημερινό ενδιαφέρον για την επέκταση των όρων της λογικής), και ότι θα καταστεί παρωχημένη από την έλευση της προτασιακής λογικής και του κατηγορηματικού λογισμού. Άλλοι χρησιμοποιούν τον Αριστοτέλη στη θεωρία επιχειρηματολογίας για να βοηθήσουν στην ανάπτυξη και κριτική αμφισβήτηση επιχειρηματολογικών συστημάτων που χρησιμοποιούνται στην τεχνητή νοημοσύνη και στα νομικά επιχειρήματα.

Προτασιακή λογική
Ένας προτασιακός λογισμός ή λογική είναι ένα τυπικό σύστημα στο οποίο οι τύποι που αναπαριστάνουν προτάσεις μπορούν να σχηματίζονται με το συνδυασμό ατομικών προτάσεων χρησιμοποιώντας λογικούς συνδέσμους, και στον οποίο ένα σύστημα τυπικών κανόνων αποδείξεως επιτρέπει σε ορισμένους τύπους να καθιερόνονται ως «θεωρήματα».

Κατηγορηματική λογική
Κατηγορηματική λογική είναι ο γενικός όρος για τα συμβολικά τυπικά συστήματα, όπως η πρώτης τάξης λογική, η δεύτερης τάξης λογική, η πολυτυπική λογική και η λογική infinitary (ή άπειρη λογική, έσχατη λογική). Η κατηγορηματική λογική παρέχει έναν απολογισμό από ποσοδείκτες αρκετά γενικούς ώστε να εκφράσουν ένα ευρύ σύνολο από επιχειρήματα που εμφανίζονται στη φυσική γλώσσα. Η αριστοτελική συλλογιστική λογική καθορίζει ένα μικρό αριθμό από τους τύπους των οποίων το αντίστοιχο τμήμα των εμπλεκόμενων κρίσεων μπορεί να λάβει. Η κατηγορηματική λογική επιτρέπει φράσεις να αναλυθούν στο θέμα και στο επιχείρημα με διάφορους εναλλακτικούς τρόπους, και έτσι επιτρέπει να λύσει το πρόβλημα των πολλαπλών γενικοτήτων που είχε φέρει σε αμηχανία του μεσαιωνικούς επιστήμονες της λογικής.

Η ανάπτυξη της κατηγορηματικής λογικής συνήθως αποδίδεται στον Φρέγκε, ο οποίος επίσης καταλογίζεται ως ένας από τους θεμελιωτές της αναλυτικής φιλοσοφίας, αλλά η κατηγορηματική λογική που χρησιμοποιείται πιο συχνά σήμερα είναι η πρώτης τάξεως λογική που παρουσιάστηκε στο Αρχές της μαθηματικής λογικής (Principles of mathematical logic) από τους Ντέιβιντ Χίλμπερτ και Βίλχεμ Άκερμαν το 1928. Η αναλυτική γενικότητα της κατηγορηματικής λογικής επέτρεψε την τυποποίηση των μαθηματικών, οδηγώντας στην έρευνα της θεωρία των συνόλων, και την ανάπτυξη της θεωρίας μοντέλων του Άλφρεντ Τάρσκι. Παρέχει τα θεμέλια της σύγχρονης μαθηματικής λογικής. Το αρχικό σύστημα της κατηγορηματικής λογικής του Φρέγκε ήταν δεύτερης τάξης κι όχι πρώτης τάξης. Τη δεύτερης τάξης λογική εμφανώς υπερασπίστηκαν, έναντι της κριτικής του Ουίλαρντ Φαν Όρμαν Κουίν και άλλων, οι Τζορτζ Μπόολος και Στιούαρτ Σαπίρο.

Τροπική λογική
Στις γλώσσες, η τροπικότητα ασχολείται με το φαινόμενο όπου τα επιμέρους τμήματα μιας πρότασης μπορούν να έχουν δική τους σημασιολογία διαμορφωμένες από ειδικά ρήματα ή τροπικά υποτμήματα. Για παράδειγμα, η πρόταση «Πάμε στους αγώνες» μπορεί να τροποποιηθεί «Πρέπει να πάμε στους αγώνες», «Μπορούμε να πάμε στους αγώνες» και ίσως «Θα πάμε στους αγώνες». Πιο αφηρημένα, θα μπορούσαμε να πούμε ότι η τροπικότητα επηρεάζει τις συνθήκες υπό τις οποίες παίρνουμε έναν ισχυρισμό που πρέπει πληρείται.

Η λογική του Αριστοτέλη, κατά ένα μεγάλο μέρος, ασχολείται με τη θεωρία της μη τροποποιημένης λογική. Παρ’ όλα αυτά, υπάρχουν αποσπάσματα στο έργο του, όπως το περίφημο επιχείρημα στο Περί ερμηνείας § 9, που σήμερα θεωρούνται προφητικά της τροπικής λογικής και η σύνδεσή της με την δυναμικότητα και το χρόνο, το παλαιότερο τυπικό σύστημα της τροπικής λογικής αναπτύχθηκε από τον Αβικέννα, τον οποίο ανέπτυξε τελικώς μια θεωρία «χρονικώς τροποποιημένης» συλλογιστικής.

Αν και η μελέτη της της ανάγκης και πιθανότητας παρέμεινα σημαντική για τους φιλόσοφους, μικρή ανάπτυξη γνώρισε οι καινοτομίες στη λογική μέχρι τις έρευνες-ορόσημο του Κλάρενς Ίρβινγκ Λιούις το έτος 1918, ο οποίος διατύπωσε μια οικογένεια από αντίπαλους αξιωματισμούς των alethic τρόπων. Το έργο εξαπέλυσε έναν χείμαρρο από εργασίες σχετικά με το θέμα, επεκτείνοντας τα είδη των τροπικοτήτων έτσι ώστε να συμπεριλαμβάνουν τη δεοντική λογική και την επιστημολογική λογική. Η δημιουργική εργασία του Άρθουρ Πριόρ εφήρμοσε την ίδια τυπική γλώσσα για την αντιμετώπιση της χρονικής λογικής και άνοιξε το δρόμο για το “γάμο” των δύο θεμάτων. Ο Σάουλ Κρίπκε ανακάλυψε (ταυτόχρονα με τους αντιπάλους) τη θεωρία της πλαίσιο-σημασιολογίας, η οποία διέθεσε την τυπική τεχνολογία στους επιστήμονες της τροπικής λογικής και έδωσε έναν νέο γραφο-θεωρητικό τρόπο θεώρησης στην τροπικότητα που έχει οδηγήσει σε πολλές εφαρμογές στην υπολογιστική γλωσσολογία και την επιστήμη των υπολογιστών, όπως η δυναμική λογική (ή αλλιώς χρονομετρημένη λογική).

Άτυπη λογική
Το κίνητρο για τη μελέτη της λογικής στην αρχαιότητα ήταν σαφές: ότι είναι έτσι ώστε να μπορείς κανείς να μάθει να διακρίνει τα καλά από τα κακά επιχειρήματα, και έτσι να γίνει πιο αποτελεσματικός στην επιχειρηματολογία και στη ρητορική, ίσως και να γίνει καλύτερος άνθρωπος. Τα μισά από τα έργα του Όργανον του Αριστοτέλη αντιμετωπίζει το συμπερασμό όπως εμφανίζεται σε ένα άτυπο πλαίσιο, πλάι-πλάι με την ανάπτυξη της συλλογιστικής, και στο αριστοτελικό σχολείο, οι εργασίες πάνω στην άτυπη λογική θεωρούνταν ως συμπληρωματικές στη ρητορική διδασκαλία του Αριστοτέλη.

Αυτό το αρχαίο κίνητρο παραμένει ζωντανό, αν και πλέον δεν είναι στο επίκεντρο της λογικής. Τυπικώς η διαλεκτική λογική θα σχηματίσει τον πυρήνα ενός μαθήματος στην κριτική σκέψη, ένα υποχρεωτικό μάθημα σε πολλά πανεπιστήμια. Η θεωρία της επιχειρηματολογίας είναι η μελέτη και η έρευνα της άτυπης λογικής, των λογικών πλανών και των κρίσιμων ερωτημάτων που σχετίζονται με την καθημερινότητα και πρακτικές καταστάσεις. Συγκεκριμένοι τύποι του διαλόγου μπορούν αναλυθούν και να αμφισβητηθούν για να αποκαλύψουν προκείμενες, συμπεράσματα και πλάνες. Η θεωρία της επιχειρηματολογίας εφαρμόζεται στην τεχνητή νοημοσύνη και το δίκαιο.

Επιχείρημα

Στη λογική και τη φιλοσοφία, το επιχείρημα είναι μια προσπάθεια να πείσει κάποιον για κάτι, δίνοντας τους λόγους για να αποδεχθεί ένα συγκεκριμένο συμπέρασμα όπως προκύπτει. Η γενική δομή ενός επιχειρήματος σε μια φυσική γλώσσα είναι εκείνη των προκείμενων (συνήθως σε μορφή θεωρημάτων, δηλώσεων ή προτάσεων) υπέρ του ισχυρισμού: του συμπεράσματος. Η δομή ορισμένων επιχειρημάτων μπορεί επίσης να καθοριστεί σε μια τυπική γλώσσα, και τα τυπικώς ορισμένα “επιχειρήματα” μπορούν να γίνουν ανεξάρτητα από τα επιχειρήματα των φυσικών γλωσσών, όπως στη λογική, τα μαθηματικά και την επιστήμη των υπολογιστών.

Σε ένα τυπικό παραγωγικό (ή απαγωγικό) επιχείρημα, οι προκείμενες χρησιμοποιούνται για να δώσουν εγγύηση από την αλήθεια του συμπεράσματος, ενώ σε ένα επαγωγικό επιχείρημα, θεωρούνται ότι δίνουν τους λόγους που αιτιολογούν (συνηγορούν) τη πιθανή αλήθεια του συμπεράσματος. Τα πρότυπα για την αξιολόγηση των μη παραγωγικών επιχειρημάτων μπορούν να σε διαφορετικά ή πρόσθετα κριτήρια από την αλήθεια, για παράδειγμα, η πειστικότητα των λεγόμενων “αναγκαίων ισχυρισμών” σε υπερβατικά επιχειρήματα, η ποιότητα των υποθέσεων στον υποθετικό-παραγωγικό συλλογισμό (retroduction), ή ακόμη και η γνωστοποίηση νέων δυνατοτήτων στη σκέψη και δράση.

Τα πρότυπα και τα κριτήρια που χρησιμοποιούνται στην αξιολόγηση των επιχειρημάτων και των μορφών του συλλογισμού τους μελετήθηκαν στη λογική. Ακόμη, έχουν μελετηθεί αποτελεσματικοί τρόποι διατύπωσης επιχειρημάτων (θεωρία επιχειρημάτων). Ένα επιχείρημα σε μια τυπική γλώσσα δείχνει τη λογική μορφή του συμβολικά αναπαριστανόμενου ή φυσικής γλώσσας επιχειρήματος που λαμβάνεται βάση τις ερμηνείες του.

Μαθηματική λογική

Η μαθηματική λογική αναφέρεται στην πραγματικότητα σε δύο διαφορετικούς τομείς της έρευνας, ο πρώτος είναι η εφαρμογή των τεχνικών της τυπικής λογικής στα μαθηματικά και τη μαθηματική συλλογιστική, και ο δεύτερος, προς την άλλη κατεύθυνση, η εφαρμογή των μαθηματικών τεχνικών για την αναπαράσταση και ανάλυση της τυπικής λογικής. Η παλαιότερη χρήση των μαθηματικών και της γεωμετρίας σε σχέση με τη λογική και τη φιλοσοφία χρονολογείται από τους αρχαίους Έλληνες, όπως ο Ευκλείδης, ο Πλάτωνας και ο Αριστοτέλης. Πολλοί άλλοι αρχαίοι και μεσαιωνικοί φιλόσοφοι εφήρμοσαν μαθηματικές ιδέες και μεθόδους για τους δικούς τους φιλοσοφικούς ισχυρισμούς.

Μπέρτραντ Ράσελ

Μια από τις πιο τολμηρές προσπάθειες για την εφαρμογή της λογικής στα μαθηματικά ήταν αναμφισβήτητα ο λογικισμός των φιλόσοφων-επιστημών της λογικής όπως Γκότλομπ Φρέγκε και Μπέρτραντ Ράσελ: η ιδέα ήταν ότι οι μαθηματικές θεωρίες ήταν λογικές ταυτολογίες και το πρόγραμμα ήταν να δείξει αυτό με τη μείωση των μαθηματικών στη λογική. Οι διάφορες προσπάθειες να το υλοποιήσουν συνάντησαν μια σειρά από αποτυχίες , από την αποδυνάμωση του προγράμματος του Φρέγκε στο έργο του Grundgesetze από το παράδοξο του Ράσελ, μέχρι την ήττα του προγράμματος του Χίλμπερτ από τα θεωρήματα μη πληρότητας του Γκέντελ.

Η έκθεση του προγράμματος του Χίλμπερτ όσο και η διάψευσή του από τον Γκέντελ εξαρτήθηκαν από την εργασία τους για τη θέσπιση του δεύτερου τομέα της μαθηματικής λογικής, την εφαρμογή των μαθηματικών στη λογική με τη μορφή της θεωρίας απόδειξης. Παρά την αρνητική φύση των θεωρημάτων μη πληρότητας, το θεώρημα πληρότητας του Γκέντελ, ένα αποτέλεσμα στη θεωρία μοντέλων και μια άλλη εφαρμογή των μαθηματικών στη λογική, μπορούν να θεωρηθεί ότι δείχνουν πόσο κοντά ο λογικισμός πλησίασε την αλήθεια: κάθε αυστηρά καθορισμένη μαθηματική θεωρία μπορεί να είναι επακριβώς καταγεγραμμένη από μια πρώτης τάξεως λογική θεωρία. Ο αποδεικτικός λογισμός του Φρέγκε είναι αρκετός για να περιγράψει το σύνολο των μαθηματικών, αν και δεν ισοδυναμεί με αυτό. Έτσι, βλέπουμε πώς οι δύο αυτές συμπληρωματικές περιοχές της μαθηματικής λογικής υπήρξαν και συνδέθηκαν.

Η θεωρία απόδειξης και η θεωρία μοντέλων ήταν τα θεμέλια της μαθηματικής λογικής, αλλά δύο από τους τέσσερις πυλώνες του θέματος. Η θεωρία συνόλων προέρχεται από τη μελέτη του άπειρου από τον Γκέοργκ Κάντορ και αποτέλεσε πηγή πολλών από τα πιο δύσκολα και σημαντικά ζητήματα στη μαθηματική λογική, από το θεώρημα του Κάντορ, στο καθεστώς του αξιώματος της επιλογής και το ζήτημα της ανεξαρτησίας της υποθέσεως του συνεχούς, μέχρι τη σύγχρονη συζήτηση γύρω από τα μεγάλα βασικά αξιώματα.

Η θεωρία αναδρομής συλλαμβάνει την ιδέα του υπολογισμού σε λογικούς και αριθμητικούς όρους. Τα πιο κλασικά επιτεύγματά της είναι η αναποφασιστικότητα του Entscheidungsproblem (decision problem ή πρόβλημα αποφάσεων) από τον Άλαν Τούρινγκ και η παρουσίαση της θέσης Church-Turing. Σήμερα η θεωρία αναδρομής ως επί το πλείστον ασχολείται με το πιο εκλεπτυσμένο πρόβλημα των κλάσεων πολυπλοκότητας – πότε ένα πρόβλημα είναι αποτελεσματικά επιλύσιμο; – και την ταξινόμηση των βαθμών αναποκρισιμότητας.

Φιλοσοφική λογική

Η φιλοσοφική λογική ασχολείται με τυπικές περιγραφές της φυσικής γλώσσας. Οι περισσότεροι φιλόσοφοι υποθέτουν ότι το κύριο μέρος της “κανονικής” ορθής συλλογιστικής μπορεί να αποτυπωθεί από τη λογική, αν μπορεί κάποιος να βρει τη σωστή μέθοδο για τη μετάφραση από καθημερινή γλώσσα (ordinary language) σε αυτή τη λογική. Η φιλοσοφική λογική είναι ουσιαστικά μια συνέχεια της παραδοσιακού τομέα που αποκαλούταν “Λογική” πριν από την εφεύρεση της μαθηματικής λογικής. Το ενδιαφέρον της είναι στραμμένο στη σύνδεση μεταξύ φυσικής γλώσσας και λογικής. Ως αποτέλεσμα, οι επιστήμονες της φιλοσοφικής λογικής έχουν συμβάλει σε μεγάλο βαθμό στην ανάπτυξη των non-stardard λογικών (π.χ. ελεύθερες λογικές, χρονικές λογικές), καθώς και διάφορες επεκτάσεις της κλασικής λογικής (π.χ. τροπικές λογικές) και non-standard σημασιολογίες για τις εν λόγω λογικές (π.χ. τεχνική του Kripke των supervaluations στη σημασιολογία της λογικής).

Η λογική και η φιλοσοφία της γλώσσας είναι στενά συνδεδεμένες. Η φιλοσοφία της γλώσσας έχει να κάνει με τη μελέτη του πώς η γλώσσα μας δεσμεύει και αλληλεπιδρά με τη σκέψη μας. Η λογική έχει άμεσο αντίκτυπο σε άλλους τομείς της μελέτης. Η μελέτη της λογικής και της σχέσης μεταξύ λογικής και των καθημερινών ομιλιών μπορεί να βοηθήσει ένα άτομο να δομεί καλύτερα τα επιχειρήματά του και κρίνει τα επιχειρημάτων των άλλων. Πολλά δημοφιλή επιχειρήματα είναι γεμάτα με λάθη εξαιτίας του μεγάλου αριθμού ανθρώπων που είναι ανεκπαίδευτοι στη λογική και αγνοούν για το πώς να διαμορφώσουν ένα επιχείρημα με το σωστό τρόπο.

terrapapers.com- logiki ipologiston
Υπολογιστική λογική
Κύριο λήμμα: Λογική στην επιστήμη των υπολογιστών

Η λογική έκοψε στην καρδιά της επιστήμης των υπολογιστών καθώς αναδείχθηκε ως τομέας της: το εργασία του Άλαν Τούρινγκ στο Entscheidungsproblem (πρόβλημα αποφάσεων) ακολουθούμενο από την εργασία του Κουρτ Γκέντελ πάνω στα θεωρήματα μη πληρότητας, και η ιδέα των υπολογιστών γενικής χρήσης που προήλθε από την τελευταία ήταν θεμελιώδους σημασίας για τους σχεδιαστές του μηχανισμού των ηλεκτρονικών υπολογιστών στη δεκαετία του 1940.

Στις δεκαετίες του 1950 και του 1960, οι ερευνητές πρόβλεψαν ότι όταν η ανθρώπινη γνώση θα μπορούσε να εκφράζεται χρησιμοποιώντας τη λογική με μαθηματική σημειογραφία, θα ήταν πιθανό να δημιουργήσουμε ένα μηχάνημα το οποίο θα συλλογίζεται, ή αλλιώς, τεχνητή νοημοσύνη. Αποδείχθηκε ότι είναι πιο δύσκολο από ό,τι αναμενόταν, λόγω της πολυπλοκότητας της ανθρώπινης σκέψης. Στο λογικό προγραμματισμό, ένα πρόγραμμα αποτελείται από ένα σύνολο αξιωμάτων και κανόνων. Τα συστήματα του λογικού προγραμματισμού, όπως η Prolog, υπολογίζουν τις συνέπειες των αξιωμάτων και των κανόνων, προκειμένου να απαντήσουν σε ένα ερώτημα.

Σήμερα η λογική έχει εφαρμοστεί ευρέως στους τομείς της τεχνητής νοημοσύνης και της επιστήμης των υπολογιστών, ενώ αυτοί οι τομείς αποτελούν πλούσια πηγή προβλημάτων στην τυπική και άτυπη λογική. Η θεωρία επιχειρηματολογίας είναι ένα καλό παράδειγμα του πώς η λογική εφαρμόζεται στην τεχνητή νοημοσύνη. Η ACM Computing Classification System διακρίνει:

Section F.3 στις λογικές με τις έννοιες των προγραμμάτων και F.4 στη μαθηματική λογική με τις τυπικές γλώσσες ως τμήμα της θεωρίας της επιστήμης των υπολογιστών: αυτά καλύπτουν την τυπική σημασιολογία των γλωσσών προγραμματισμού, καθώς και το έργο τυπικών μεθόδων όπως είναι η λογική του Χόαρ

Τη λογική του Μπουλ ως θεμελιώδη για το υλικό του υπολογιστή: section B.2 του συστήματος στις αριθμητικές και λογικές δομές, που αφορούν τις λειτουργίες AND(ΚΑΙ), ΝΟΤ(ΌΧΙ) και OR(Ή) Πολλοί θεμελιώδης λογικοί φορμαλισμοί είναι απαραίτητοι στο section I.2 στην τεχνητή νοημοσύνη, όπως για παράδειγμα η τροπική λογική και η προεπιλεγμένη λογική στην αναπαράσταση γνώσης φορμαλισμών και μεθόδων, οι διατάξεις του Χορν στο λογικό προγραμματισμό, και η περιγραφική λογική (description logic).

Ακόμη περισσότερο, οι υπολογιστές μπορούν να χρησιμοποιηθούν ως εργαλεία για τους επιστήμονες της λογικής. Για παράδειγμα, στη συμβολική και μαθηματική λογική, οι αποδείξεις από ανθρώπους μπορούν να γίνουν με τη βοήθεια υπολογιστή. Χρησιμοποιώντας αυτοματοποιημένη απόδειξη θεωρημάτων οι υπολογιστές μπορούν να βρουν και να ελέγξουν αποδείξεις, καθώς και να εργαστούν με αποδείξεις οι οποίες είναι υπερβολικά χρονοβόρες για να γραφτούν με το χέρι.

Κβαντική Λογική

Ένα έγγραφο, το 1936, από τον Γκάρετ Μπίρκοφ και τον Τζον φον Νόιμαν ήταν αρκετό για να θεμελιώσει την κβαντική λογική. H προσπάθειά τους εντείνονταν στον συμβιβασμό της ανακολουθίας της κλασικής λογικής στις αξιώσεις της κβαντικής μηχανικής με τα πραγματικά περιστατικά σχετικά με τη μέτρηση των συμπληρωματικών μεταβλητών στην κβαντική μηχανική, όπως η θέση και η ορμή. Η κβαντική λογική μπορεί να διαμορφωθεί είτε ως μια τροποποιημένη έκδοση της προτασιακής λογικής είτε ως μια μη-μεταθετική και μη-συνειρμική λογική πολλών τιμών (multi-valued logic). Ωστόσο, έχει κάποιες ιδιότητες που την διακρίνουν σαφώς από την κλασική λογική, με κυριότερη την αδυναμία του επιμεριστικού νόμου της προτασιακής λογικής.

Δισθενές και ο νόμος της αποκλεισμένης μέσης

Οι λογικές που διατυπώθηκαν παραπάνω είναι όλες «δισθενείς» ή «δύο-τιμών». Για αυτό γίνονται περισσότερα φυσικά αντιληπτές ως διαίρεση προτάσεων σε αληθινές και ψευδείς. Οι μη κλασσικές λογικές είναι αυτά τα συστήματα που απορρίπτουν το δισθενές. Ο Χέγκελ ανέπτυξε τη δική του διαλεκτική λογική η οποία επέκτεινε την υπερβατική λογική του Καντ αλλά η οποία την “προσγείωσε” διαβεβαιώνοντάς μας ότι «ούτε στον ουρό ούτε στη γη, ούτε στον κόσμο του μυαλού ούτε της φύσης, δεν υπάρχει “είτε Α, είτε Β” όσο η κατανόηση συντηρείται. Ότι υπάρχει είναι απτό, διαφορετικό και σε αντίθεση από μόνο του».

Το 1910, ο Νικολάι Βασίλιεφ επέκτεινε τον νόμο της αποκλεισμένης μέσης και το νόμο των αντιθέτων και πρότεινε το νόμο του αποκλεισμένου τέταρτου και λογική ανθεκτική στην αντίφαση. Στις αρχές του 20ου αιώνα ο Γιαν Λουκάσιεβιτς διερεύνησε την επέκταση των παραδοσιακών τιμών αληθές/ψευδές για να συμπεριλάβει μια τρίτη τιμή, “πιθανό”, εφευρίσκοντας την τριαδική λογική, την πρώτη λογική πολλαπλών τιμών. Λογικές όπως η λογική fuzzy (ασαφής λογική), δεδομένου ότι έχουν επινοηθεί με έναν άπειρο αριθμό από “βαθμίδες αλήθειας”, αναπαραστάθηκαν από ένα πραγματικό αριθμό μεταξύ 0 και 1.

Η ενορατική λογική προτάθηκε από τον L. E. J. Brouwer ως η σωστή λογική για τη συλλογιστική στα μαθηματικά, με βάση την απόρριψη του νόμου της αποκλεισμένης μέσης, ως τμήμα του ενορατισμού. Ο Brouwer απέρριψε την τυποποίηση των μαθηματικών, ο μαθητής του Arend Heyting όμως μελέτησε την ενορατική λογική ως τυπική, όπως έκανε και ο Gerhard Gentzen. Η ενορατική λογική προσελκύει μεγάλο ενδιαφέρον στους επιστήμονες πληροφορικής, καθώς είναι μια εποικοδομητική λογική και μπορεί να εφαρμοστεί για την εξαγωγή προγραμμάτων που επαληθεύονται από αποδείξεις.

Η τροπική λογική δεν είναι αληθινή υποθετική (conditional), και για αυτό έχει συχνά προταθεί ως μη κλασική λογική. Ωστόσο η τροπική λογική είναι συνήθως τυποποιημένη με την αρχή της αποκλεισμένης μέσης και η σχεσιακή της σημασιολογία είναι δισθενής, οπότε η ένταξη της είναι αμφισβητήσιμη.

Είναι η λογική εμπειρική;
Κύριο λήμμα: “Is logic empirical?”

Ποιο είναι το επιστημονολογικό καθεστώς των νόμων της λογικής; Τι είδους επιχείρημα είναι κατάλληλο για την κριτική δήθεν αρχών της λογικής; Σε μια σημαντική εργασία με τίτλο Is logic empirical? (Είναι η λογική εμπειρική;) του Χίλαρι Πούτναμ, βασισμένος σε μια πρόταση του Κουίν, υποστήριξε ότι σε γενικές γραμμές τα στοιχεία της προτασιακής λογικής έχουν ένα παρόμοιο επιστημολογικό καθεστώς ως στοιχεία σχετικά με το φυσικό σύμπαν, όπως για παράδειγμα τους νόμους της μηχανικής και της γενικής σχετικότητας, και ιδίως ότι αυτό που οι φυσικοί έχουν μάθει για την κβαντική μηχανική δείχνει την επιτακτική ανάγκη για εγκατάλειψη ορισμένων εκ των γνωστών αρχών της κλασικής λογικής: αν θέλουμε να είμαστε ρεαλιστές σχετικά με τα φυσικά φαινόμενα που περιγράφονται από την κβαντική θεωρία, τότε θα πρέπει να εγκαταλείψουμε την αρχή της επιμεριστικότητας, αντικαθιστώντας την κλασική λογική με την κβαντική λογική που προτάθηκε από τους Γκάρετ Μπίρκοφ και Τζον φον Νόιμαν.

Μία άλλη ομώνυμη εργασία από τον Sir Michael Dummett υποστηρίζει ότι η επιθυμία του Πούτναμ για το ρεαλισμό επιτάσσει το νόμο της επιμεριστικότητας. Η επιμεριστικότητα της λογικής είναι απαραίτητη για την κατανόηση των ρεαλιστών για το πώς οι προτάσεις είναι αλήθεια του κόσμου κατά τον ίδιο ακριβώς τρόπο όπως ο Dummett έχει ισχυριστεί ότι η αρχή του δισθενούς είναι. Με τον τρόπο αυτό, η ερώτηση “Είναι η λογική εμπειρική;” μπορεί να θεωρηθεί ότι οδηγεί φυσικά στη θεμελιώδη αντιπαράθεση στην μεταφυσική στο ρεαλισμό έναντι του αντι-ρεαλισμού.

Συνεπαγωγή: Αυστηρή ή αιτιατή;
Κύριο λήμμα: Παράδοξο της συνεπαγωγής

Είναι προφανές ότι η έννοια της συνεπαγωγής που τυποποιήθηκε στην κλασική λογική δεν μεταφράζεται άνετα σε φυσική γλώσσα με τη βοήθεια της δομής “αν…τότε”, και αυτό οφείλεται σε μια σειρά από προβλήματα που ονομάζονται τα παράδοξα της αιτιατής συνεπαγωγής.

Η πρώτη κλάση των παραδόξων περιλαμβάνει αντιπαραδείγματα, όπως «Αν το φεγγάρι είναι φτιαγμένο από πράσινο τυρί, τότε 2+2=5», που είναι αινιγματικό γιατί η φυσική γλώσσα δεν υποστηρίζει την αρχή της έκρηξης. Η εξάλειψη αυτής της κλάσης παραδόξων ήταν ο λόγος για τη διατύπωση από τον Κλάρενς Ίρβινγκ Λιούις της αυστηρής (τροπικής) συνεπαγωγής, η οποία τελικά οδήγησε σε πιο ριζικές ρεβιζιονιστικές (αναθεωρητικές) λογικές όπως είναι η σχετική λογική (relevant ή relevance logic).

Η δεύτερη κλάση των παραδόξων περιλαμβάνει περιττές προκείμενες, ψευδώς υποδηλώνοντας ότι γνωρίζοντας το μεταγενέστερο λόγω του προγενέστερου: έτσι, η πρόταση «εάν αυτός ο άνθρωπος εκλεγεί, η γιαγιά θα πεθάνει» είναι στην ουσία αληθής, δεδομένου ότι η γιαγιά είναι θνητή, ανεξάρτητα από τις εκλογικές προοπτικές του ανθρώπου. Τέτοιες φράσεις παραβιάζουν την απόφθεγμα του Πολ Γκράις της σχέσης, και μπορούν να μοντελοποιηθούν από λογικές που απορρίπτουν την αρχή της μονοτονίας, όπως η σχετική λογική.

Ανέχοντας το αδύνατο
Κύριο λήμμα: Παρασυνεπής λογική

Ο Χέγκελ είχε εξαιρετικά επικριτική στάση σε οποιαδήποτε απλουστευμένη έννοια του νόμου της μη αντίφασης. Ήταν βασισμένος στην ιδέα του Λάιμπνιτς ότι αυτός ο νόμος της λογικής απαιτεί επίσης επαρκή αιτιολογία για να διευκρινίζει από ποια οπτική γωνία (ή χρόνο) κάποιος λέει ότι κάτι δεν μπορεί να αντιφάσκει. Ένα κτήριο, για παράδειγμα, κινείται αλλά και δεν κινείται μαζί, το έδαφος κατά μία έννοια είναι το ηλιακό μας σύστημα ενώ κατ’ άλλη είναι η γη. Στην εγελιανή διαλεκτική, ο νόμος της μη αντίφασης, της ταυτότητας, ο ίδιος στηρίζεται στη διαφορά και έτσι δεν είναι ανεξάρτητα διεκδικήσιμος.

Στενά συνδεδεμένη με ζητήματα που προκύπτουν από τα παράδοξα της implication έρχεται η πρόταση ότι η λογική θα έπρεπε να ανεχτεί την ασυνέπεια. Η σχετική λογική (relative logic) και η παρασυνεπής λογική (paraconsistent logic) είναι οι σημαντικότερες προσεγγίσεις εδώ, αν και οι ανησυχίες διαφέρουν: μια βασική συνέπεια της κλασικής λογικής και ορισμένων από τις αντίπαλές της, όπως είναι η ενορατική λογική, είναι ότι τηρούν την αρχή της έκρηξης (principle of explosion, ή αλλιώς principle of Pseudo-Scotus), το οποίο σημαίνει ότι η λογική καταρρέει αν από αυτή δύναται να προκύψει μια αντίφαση. Ο Γκράχαμ Πριστ, ο κύριος υποστηρικτής του διαληθισμού, έχει ταχθεί υπέρ της παρασυνέπειας με την αιτιολογία ότι υπάρχουν στην πραγματικότητα αληθινές αντιφάσεις.

Απόρριψη της λογικής αλήθειας

Η φιλοσοφική φλέβα των διαφόρων ειδών του σκεπτικισμού περιέχει πολλά είδη της αμφισβήτησης και απόρριψης των διαφόρων βάσεων στις οποίες στηρίζεται η λογική, όπως η ιδέα της λογικής μορφής, ο σωστός συμπερασμός, ή έννοια, συνήθως οδηγεί στο συμπέρασμα ότι δεν υπάρχουν λογικές αλήθειες. Παρατηρήστε ότι αυτό είναι το αντίθετο στις συνήθεις απόψεις στο φιλοσοφικό σκεπτικισμό, όπου η λογική κατευθύνει την σκεπτικιστική έρευνα να αμφιβάλλει για τις θεόσταλτες σοφίες και ξεπερασμένες απόψεις, όπως στο έργο του Σέξτου του Εμπειρικού.

Φρίντριχ Νίτσε

Ο Φρίντριχ Νίτσε προβάλλει ένα ισχυρό παράδειγμα της απόρριψης της συνήθης βάσης της λογικής: η ριζική απόρριψη της εξιδανίκευσης τον οδήγησε να απορρίψει την αλήθεια ως «…ένα κινητός στρατός από μεταφορές, μετώνυμα και ανθρωπομορφισμούς – με λίγα λόγια, μεταφορές οι οποίες έχουν φθαρεί και χωρίς αισθητηριακή δύναμη. Κέρματα που έχουν χάσει το νόημά τους και πλέον έχουν σημασία ως μέταλλο κι όχι ως κέρματα». Η απόρριψη της αλήθειας δεν τον οδήγησε να απορρίψει την ιδέα του συμπερασμού ή λογικής εντελώς, αλλά πρότεινε ότι «η λογική άρχισε να λειτουργεί στο ανθρώπινο κεφάλι έξω από το παράλογο, του οποίου το πεδίο κανονικά θα έπρεπε να ήταν απέραντο. Αναρίθμητα όντα που συμπέραναν κατά τρόπο διαφορετικό από το δικό μας έχασαν τη ζωή τους». Έτσι, υπάρχει η ιδέα ότι η λογική συναγωγή έχει την χρησιμότητα της στην ανθρώπινη επιβίωση, αλλά και ότι η ύπαρξή του δεν υποστηρίζει την ύπαρξη της αλήθειας, ούτε έχει μια πραγματικότητα πέρα από την καθορισμένη: «Επίσης, η λογική βασίζεται σε υποθέσεις που δεν αντιστοιχούν σε τίποτα στον πραγματικό κόσμο».

Λογική Πλάνη

Στη φιλοσοφία, ο όρος λογική πλάνη αναφέρεται στη σχηματική πλάνη, δηλαδή σε ένα ψεγάδι στη δομή ενός παραγωγικού επιχειρήματος, το οποίο καθιστά το επιχείρημα άκυρο. Ωστόσο, συχνά απαντά στον ανεπίσημο διάλογο για να υποδηλώσει ένα επιχείρημα το οποίο μπορεί να είναι προβληματικό για οποιονδήποτε λόγο. Σε αυτή την χρήση του όρου συμπεριλαμβάνονται τόσο οι μη σχηματικές πλάνες (δηλαδή έγκυρες αλλά σαθρές προτάσεις ή μη ποιοτική/μη παραγωγική επιχειρηματολογία) όσο και οι σχηματικές πλάνες. Ο όρος είναι γνωστός και ως Διαλληλία.

Το ότι σε ένα παραγωγικό επιχείρημα εντοπίζεται σχηματική πλάνη δεν επηρεάζει τις προτάσεις ή το συμπέρασμα του επιχειρήματος, αφού είναι δυνατόν είτε και τα δύο να είναι αληθή είτε απλώς να είναι πολύ πιθανά εξαιτίας της φύσης του επιχειρήματος (π.χ. προσφυγή στην αυθεντία). Παρόλα αυτά, το παραγωγικό επιχείρημα παραμένει άκυρο, διότι το συμπέρασμά του δεν προκύπτει από τις προτάσεις του κατά τον αναμενόμενο τρόπο. Κατ’ επέκταση, υπάρχουν μη παραγωγικά επιχειρήματα τα οποία επίσης πάσχουν από σχηματικές πλάνες. Για παράδειγμα, ένα επαγωγικό επιχείρημα το οποίο αποπειράται να εφαρμόσει αρχές των πιθανοτήτων ή της αιτιότητας με εσφαλμένο τρόπο πέφτει επίσης σε σχηματική πλάνη.

Είναι δύσκολο να αναγνωριστούν οι πλάνες στην καθημερινή επιχειρηματολογία, διότι τα επιχειρήματα συνήθως απαντούν ενσωματωμένα σε ρητορικές που συσκοτίζουν τις λογικές συνδέσεις μεταξύ των προτάσεών τους. Επιπλέον, οι μη σχηματικές πλάνες εκμεταλλεύονται τα συναισθήματα καθώς και τις διανοητικές και ψυχολογικές αδυναμίες του κοινού στο οποίο απευθύνονται. Η ικανότητα προσδιορισμού κάθε λογικής πλάνης είναι κάτι το οποίο πρέπει να αναπτύξει ο καθένας, προκειμένου να τις αποφεύγει.

Η Θεωρία της επιχειρηματολογίας προσφέρει μία εναλλακτική προσέγγιση στην κατανόηση και την ταξινόμηση των πλανών (βλέπε παραπομπή στον van Eemeren, Grootendorst). Σύμφωνα με αυτή την προσέγγιση, κάθε επιχείρημα αποτελεί διαδραστικό πρωτόκολλο μεταξύ ατόμων τα οποία πασχίζουν να επιλύσουν μία διαφωνία. Το πρωτόκολλο αυτό ρυθμίζεται από κάποιους κανόνες διάδρασης. Κάθε παραβίαση αυτών των κανόνων αποτελεί πλάνη. Πολλές από τις πλάνες της παρακάτω λίστας ανταποκρίνονται περισσότερο σε αυτόν τον ορισμό.

terrapapers.com- logiki tixi
Η πλάνη του τζογαδόρου

Είναι επίσης γνωστή και ως η πλάνη του Μόντε Κάρλο επειδή το διασημότερο παράδειγμα συνέβη στο καζίνο του Μόντε Κάρλο το καλοκαίρι του 1913, όταν το μαύρο είχε έρθει 26 συνεχόμενες φορές και οι παίκτες έχασαν εκατομμύρια γαλλικά φράγκα ποντάροντας κόκκινο. Υπάρχει και η αντίθετη περίπτωση, δηλαδή να φαίνεται ότι η πλάνη του τζογαδόρου ισχύει αλλά στην πραγματικότητα να μην ισχύει. Κλασσική περίπτωση είναι το Μπλακ τζακ όπου οι πιθανότητες να βγει βαλές στα εναπομείναντα χαρτιά είναι μικρότερες από το να βγει οποιοδήποτε άλλο φύλλο εάν έχει ήδη βγει βαλές σε προηγούμενο «χέρι».

Σε αυτή την λογική είναι χτισμένο το «μέτρημα των χαρτιών» στο Μπλακ τζακ, το οποίο με την κατάλληλη τακτική μπορεί να αποδώσει κέρδη στον παίκτη, καθώς οι πιθανότητες να κερδίζει στην διάρκεια είναι μεγαλύτερες από αυτές του καζίνο (έως και 2.5%), όταν στα εναπομείναντα χαρτιά υπάρχουν πιο πολλά μεγάλα φύλα (δέκα βαλές ντάμα ρήγας και άσος) από μικρά (δύο τρία τέσσερα πέντε και έξι). Τα φύλα εφτά οχτώ και εννέα δεν τα μετράνε. Τα περισσότερα καζίνο για να αντιμετωπίσουν το μέτρημα των χαρτιών επανατοποθετούν τα ήδη μοιρασμένα χαρτιά στα εναπομείναντα μετά από κάθε «χέρι». Περισσότερα για το μέτρημα χαρτιών στο λήμμα Card counting της αγγλικής Wikipedia

Άλλο ένα παράδειγμα που καταδεικνύει ότι τα μαθηματικά και η ανθρώπινη διαίσθηση είναι αντικρουόμενες έννοιες, είναι το πρόβλημα των γενεθλίων. Από την 1η Ιανουαρίου μέχρι και την 31η Δεκεμβρίου είναι 366 μέρες, συμπεριλαμβανομένης και της 29ης Φεβρουαρίου. Άρα για να είμαστε 100% σίγουροι ότι θα βρούμε τουλάχιστον δύο άτομα με κοινή μέρα γενεθλίων, χρειαζόμαστε το λιγότερο 367 άτομα, δηλαδή αυτούς του 366 και ακόμα έναν. Ενώ το παραπάνω παράδειγμα είναι πλήρως κατανοητό και μέσα στην «κοινή λογική» δεν ισχύει το ίδιο για τον μικρότερο αριθμό ατόμων που απαιτούνται ώστε η πιθανότητα να βρούμε τουλάχιστον δύο άτομα με την ίδια μέρα γενέθλιων να είναι 99%. Σκεφτείτε το λίγο, κάντε μια πρόβλεψη και μετά διαβάστε το άρθρο πρόβλημα των γενεθλίων για να δείτε πόσο έξω πέσατε.

Η προσφυγή στην αυθεντία

Eίναι ένα είδος λογικού επιχειρήματος επίσης γνωστού και ως argumentum ad verecundiam (Λατ. επιχείρημα προς σεβασμό) ή ipse dixit (Λατ. το είπε ο αυτός ο ίδιος), το οποίο χρησιμοποιείται όταν η τιμή αλήθειας μίας θέσης είναι ευθέως ανάλογη με την αξιοπιστία, τις γνώσεις ή το αξίωμα του προτείνοντος την θέση. Αποτελεί μέθοδο απόκτησης σχολιαστικής γνώσης και συχνά είναι λογική πλάνη. Υπάρχουν δύο βασικοί τύποι προσφυγής στην αυθεντία.

Ο πρώτος ορίζεται στην περίπτωση που κάποιος ο οποίος παρουσιάζει την θέση του σε ένα ζήτημα παραθέτει από μία αυθεντία, η οποία συμμερίζεται την ίδια θέση, ενώ δεν είναι στην πραγματικότητα αυθεντία στον εν λόγω τομέα. Για παράδειγμα, η εξής δήλωση: «Ο Άρθουρ Κλαρκ πρόσφατα εξέδωσε μία έρευνα ή οποία καταδεικνύει ότι είναι απαραίτητο να καθαρίζουμε τα δόντια μας με οδοντόνημα τρεις φορές την ημέρα» δεν θα πρέπει να πείθει κανέναν σχετικά με την χρησιμότητα του οδοντονήματος, εφόσον ο Άρθουρ Κλαρκ δεν είναι αυθεντία στην στοματική υγιεινή. Μεγάλο μέρος των διαφημίσεων βασίζεται σε αυτήν την λογική πλάνη, μέσω της οπισθογράφησης και των χορηγιών. Ο δεύτερος τύπος ορίζεται ως η παράθεση κάποιου ο οποίος πράγματι αποτελεί αυθεντία στον σχετικό τομέα γνώσης. Σε αυτήν την περίπτωση, η προσφυγή έχει μεγαλύτερο βάρος, διότι η αυθεντία έχει περισσότερες πιθανότητες να είναι ορθή. Ωστόσο, η πιθανότητα λάθους παραμένει και το επιχείρημα σε καμία περίπτωση δεν είναι απόλυτα αληθές.

Παραδείγματα προσφυγής στην αυθεντία

>Αναφορά στις φιλοσοφικές πεποιθήσεις του Αριστοτέλη. «Αφού το είπε ο Αριστοτέλης, έτσι θα είναι».

>Παραθέσεις από θρησκευτικά βιβλία, όπως η Βίβλος. «Η Βίβλος κάνει την Χ δήλωση, άρα η δήλωση Χ είναι σωστή».

> Ο ισχυρισμός ότι ένα έγκλημα είναι ηθικά εσφαλμένο επειδή είναι παράνομο. «Είναι παράνομο τα μαγαζιά να ανοίγουν την Κυριακή, άρα δεν είναι ηθικά αρμόζον να ανοίγουν». Σε αυτήν την περίπτωση, τον ρόλο της αυθεντίας έχουν οι νομοθέτες, η κρίση των οποίων εκλαμβάνεται ως ορθή ασυζητητί.

> Οι παραθέσεις επιστημονικών ερευνών που έχουν δημοσιευτεί σε έγκριτα περιοδικά. «Η επιστήμη (υπό την μορφή άρθρου σε έγκριτο περιοδικό) λέει το Χ, άρα το Χ είναι ορθό».

> Η πίστη σε ό,τι λέει κάποιος εκπαιδευτικός. «Το είπε ο δάσκαλος, άρα πρέπει να είναι αλήθεια».

> Όταν θεωρείται πως κάτι είναι αληθές επειδή αναφέρθηκε στα νέα.

> Όταν θεωρείται πως κάτι είναι αληθές επειδή αναφέρεται σε ένα εγχειρίδιο.

> Όταν θεωρείται πως κάτι είναι αληθές επειδή αναφέρεται σε μία εγκυκλοπαίδεια.

Η πλάνη της αμφισημίας ή αμφισημίας σοφίσματος επιτυγχάνεται με την χρήση μίας λέξης η οποία μπορεί να πάρει περισσότερες από μία έννοιες μέσα στα συμφραζόμενα του ίδιου επιχειρήματος, ενώ υποτίθεται ότι η λέξη φέρει την ίδια έννοια κάθε φορά που χρησιμοποιείται. Για παράδειγμα:

Ο Γιώργος είναι ευχάριστο άτομο.
Το άτομο διασπάται.
Ο Γιώργος διασπάται.

Το παραπάνω επιχείρημα πέφτει στην εξής πλάνη: Η λέξη άτομο χρησιμοποιείται στην πρώτη περίπτωση για να καταδείξει τον άνθρωπο ως πρόσωπο και ύπαρξη και για να καταδείξει το στοιχειώδες σωματίδιο της ύλης στην δεύτερη περίπτωση. Εφόσον ο δεύτερος όρος αυτού του συλλογισμού είναι στην πραγματικότητα δύο διαφορετικοί όροι, η αμφισημία εδώ αποτελεί πλάνη τεσσάρων όρων. Η πλάνη της αμφισημίας συχνά χρησιμοποιείται με λέξεις οι οποίες φέρουν βαρύ συναισθηματικό φορτίο και πολλές σημασίες. Αυτές οι σημασίες συχνά συμπίπτουν, αν χρησιμοποιηθούν μέσα σε κατάλληλα επιλεγμένα συμφραζόμενα, αλλά ο επιχειρηματολόγος που αποσκοπεί στην πλάνη μπορεί να προκαλέσει μία «σημειολογική μετατόπιση», αλλάζοντας ανεπαίσθητα και σταδιακά τα συμφραζόμενα, ούτως ώστε να επιτύχουν την αμφισημία εξισώνοντας δύο διαφορετικές έννοιες της λέξης.

Η μεταφορά αποτελεί αμφισημία διαφορετικού είδους:

Το αρσενικό του είδους Equus asinis ονομάζεται γάιδαρος
Ο γάιδαρος αντιπροσωπεύει το είδος Equus asinis
Όλοι οι γάιδαροι έχουν μεγάλα αυτιά
Ο Πέτρος είναι μεγάλο γαϊδούρι
Άρα, ο Πέτρος έχει μεγάλα αυτιά

Εδώ, η αμφισημία συνίσταται στην μεταφορική χρήση του γαϊδάρου ως αναφορά σε κάποιον ανόητο, άξεστο ή/και αχάριστο άνθρωπο, αντί για το αρσενικό του είδους Equus asinis. Η αμφισημία σχετίζεται με την πλάνη της αμφιβολίας, αν και η τελευταία βασίζεται κυρίως σε «συντακτική μετατόπιση». Η αμφισημία μπορεί να χρησιμοποιηθεί και εκτός της ορολογίας της λογικής ως ιδιότητα της γλώσσας να επιδέχεται διττή ερμηνεία. Με άλλα λόγια η γλώσσα γίνεται διφορούμενη.

Το σύνδρομο της αγέλης είναι μια λογική πλάνη όπου επιχειρείται να αποδειχθεί το αληθινό ενός ισχυρισμού στο γεγονός ότι πολλοί άνθρωποι το αποδέχονται ήδη ως αληθινό. Αυτού του είδους η πλάνη είναι επίσης γνωστή ως «προσφυγή στις μάζες», «προσφυγή στην πλειοψηφία», «προσφυγή στην ομοφωνία» και στα λατινικά «argumentum ad populum» (επιχείρημα του λαού) και ο μηχανισμός πίσω της είναι παρόμοιος με τον μηχανισμό της «προσφυγής στην αυθεντία». Είναι επίσης η βάση μιας σειράς κοινωνικών φαινομένων όπως η διασπορά διαφόρων θρησκευτικών πεποιθήσεων, πολιτικών ή οικονομικών θέσεων. Στην Αμερική βρίσκεται πίσω από το φαινόμενο «επίδραση του βαγονιού» (αγγλικά: bandwagon effect) και στην Κίνα είναι η βάση της παροιμίας «τρεις άνθρωποι φτιάχνουν μια τίγρη» (αγγλικά: three men make a tiger).

Πολιτική

Στην προσπάθεια να πεισθεί κάποιος για την ορθότητα ενός υποψήφιου νομοσχεδίου

Εννιά στους δέκα στην εκλογική μου περιφέρεια βρίσκουν το νομοσχέδιο σωστό.
Εννιά στους δέκα βουλευτές βρίσκουν το νομοσχέδιο δίκαιο.

Μάρκετινγκ & διαφήμιση

Η τάδε μάρκα ψυγείου παράγεται από την πρωτοπόρο βιομηχανία ηλεκτρικών ειδών, άρα αγόρασε το είναι καλό.
Δείτε την τάδε εκπομπή γιατί βρίσκεται στο νούμερο ένα της τηλεθέασης.

Άλλα παραδείγματα

Όλοι οι φίλοι μου το κάνουν, άρα είναι σωστό.
Όλοι λένε ότι ο ήλιος γυρνάει γύρω από την Γη (πλάνη χιλιάδων χρόνων).
Όλοι ξέρουν ότι η Γη είναι επίπεδη (πλάνη χιλιάδων χρόνων).
Τόσοι άνθρωποι πιστεύουν στον θεό, άρα ο θεός υπάρχει. (ο Δίας, Θωρ και άλλες θεότητες που λατρεύονται διαχρονικά από τους ανθρώπους)
Τόσοι άνθρωποι καπνίζουν, άρα δεν υπάρχει πρόβλημα με το κάπνισμα

Οι λαϊκές ρήσεις που συχνά αναφέρονται ως «η σοφία του λαού», εμπίπτουν σε αυτή την κατηγορία λογικής πλάνης γιατί από τους περισσότερους λαμβάνονται «αξιωματικά» ως αληθινές, ακριβώς επειδή έχουν μπει σαν «σοφία» στο υποσυνείδητο του καθενός. Ένα παράδειγμα διαδεδομένης λαϊκής ρήσης είναι «η ελπίδα πεθαίνει τελευταία», η οποία ενώ μπορεί να δώσει επιμονή σε κάποιον που ασχολείται με την επίτευξη ενός στόχου μπορεί σε άλλη περίπτωση να αποτελεί την μόνη κινητήρια δύναμη πίσω από αναζήτηση ακατόρθωτων στόχων. Επιγραμματικά η παραπάνω κινέζικη παροιμία «τρεις άνθρωποι φτιάχνουν μια τίγρη» βγαίνει από το ότι εάν ένας άνθρωπος ακούσει από κάποιον άλλον ότι στο κέντρο μιας μεγάλης πόλης κυκλοφορεί ελεύθερη μια τίγρη τότε δεν θα το πιστέψει. Εάν το ακούσει από δύο θα το λάβει υπόψιν του και εάν το ακούσει από τρεις τότε θα το πιστέψει. Το ότι πολλοί άνθρωποι πιστεύουν σε κάτι δεν σημαίνει ότι ο ισχυρισμός είναι σωστός. Η λογική πλάνη είναι η αποδοχή του ισχυρισμού σαν αλήθεια χωρίς περαιτέρω ανάλυση.

“Λογική είναι η τρέλα των πολλών” Χορόσκελης Δ.

@Ηω Αναγνώστου /miastala 2009